Decarbonizing Minnesota's Natural Gas End Uses Stakeholder Process

Clean Energy Partnership Board Meeting February 9, 2021

AGENDA

- About the Stakeholder Process
- Why the Process was Convened
- What We've Done So Far
- Where We Are
- Where We're Going
- Questions/Discussion

About the Stakeholder Process

INSTITUTE

GREAT PLAINS Better Energy. Better World.

About the stakeholder process

- Explore pathways and develop recommendations around decarbonizing natural gas end-uses in Minnesota.
- Take a portfolio approach
- Use scenario planning
- Drive toward consensus

About the stakeholder process

- Convened by GPI and CEE
- Planning Team includes:
 - Luke Hollenkamp, City of Minneapolis
 - Nick Mark, CenterPoint Energy
 - Nick Martin and Sydnie Lieb Ph.D., Xcel Energy
 - Margaret Cherne-Hendrick Ph.D., Fresh Energy
 - Trevor Drake, Great Plains Institute
 - Audrey Partridge, CEE
- Stakeholders include a broad range of entities and perspectives.
- Learn more at: https://e21initiative.org/natural-gas/

Why the process was convened?

Greenhouse gas emissions data

Total GHG emissions	Sources of 2018	Change in emissions by	Interactive sector	Indicators of GHG	Filterable data table	Documentati
and goals	emissions	sectors, 2005-2018	details	intensity		on

Minnesota is behind in meeting our milestone greenhouse gas reduction goals.

Source: https://www.pca.state.mn.us/air/state-and-regional-initiatives

MN emissions trends by sector

Greenhouse gas emissions data

Source: https://www.pca.state.mn.us/air/greenhouse-gas-emissions-data

Natural Gas Consumption in Minnesota (Residential, Commercial, and Industrial)

Source: U.S. Energy Information Administration

GHG Emissions Scenarios for Electricity and Natural Gas

Source: Clean Energy Partnership - 2019 Annual Report and Q3 2020 Board presentation

Reducing emissions from natural gas will be challenging, with wide-ranging implications.

What we've done so far.

INSTITUTE

GREAT PLAINS Better Energy. Better World.

Affordability

- Keep space heating and water heating affordable for all Minnesota residents, particularly in under-resourced communities that experience the highest energy burden (share of household income spent on all types of energy costs).
- Keep space heating, water heating, and process loads affordable for Minnesota businesses.

Equity

- Ensure that the decarbonization of natural gas end uses is done in a way that reduces current inequities and does not create new inequities, in terms of costs and benefits.
- Ensure that the benefits of the transition in terms of emissions benefits, economic benefits, public health benefits, and energy affordability benefits – are experienced among Minnesotans, especially workers, under-resourced communities, and communities in Greater Minnesota.
- Ensure that all Minnesotans have the ability to adopt technologies and fuels that decarbonize natural gas end uses affordably and effectively.

Environment

- Work toward practical, scalable, timely solutions to achieve reductions in GHG emissions and other pollutants.
- Maintain urgency, in line with Minnesota's established GHG reduction goals as well as leading climate science from the United Nations Intergovernmental Panel on Climate Change.

Economy

- Ensure that decarbonization of natural gas end uses in Minnesota supports economic development and innovation throughout the state.
- Manage disruption and create opportunities with regard to businesses, workforce, communities, and infrastructure.

System Considerations

- Tailor metrics of success to be specific to Minnesota's current and future climate, economy, energy system, and other unique characteristics.
- Consider system impacts and unintended consequences for both gas and electric to ensure a costeffective transition to utilize current assets strategically and avoid unnecessary expense.
- Develop a portfolio of solutions that improves upon the current situation (with attention to these principles) and is capable of meeting Minnesota's diverse end use needs.
- Consider the different conditions and priorities of local communities in developing solutions.

Natural Gas Emissions and Attributes

Source: Minnesota Department of Commerce

Source: Minnesota Department of Commerce

Potential decarbonization solutions

- Deep dive into technologies and fuels
 - Energy Efficiency
 - Geothermal District Energy Systems
 - Electrification
 - Renewable Natural Gas
 - Hydrogen

Other Considerations

• Workforce

- Challenges and opportunities
- Current and future
- Equity
 - Challenges and opportunities
 - Current and future

Where we are now.

GREAT PLAINS Better Energy. INSTITUTE Better World.

This study investigates opportunities for 100% gas enduse decarbonization through 3 scenarios

Technology focus

High Electrification

- Almost all buildings switch to ASHPs and GSHPs. Heating is supplied by electricity throughout the entire year. Some features:
 - All-electric for new construction
 - High efficiency through building retrofits
 - Industrial electrification where technically viable

High Electrification with Gas Back Up

- Buildings keep their gas connection and are supplied with a heat pump combined with gas furnace that serves as back up in the coldest hours of the year. Some features:
 - All-electric for new construction
 - High efficiency through building retrofits
 - Industrial electrification where technically viable

High Decarbonized Gas with dedicated hydrogen in industrial sector

- Buildings keep their gas connection while natural gas is gradually replaced by RNG. The industrial sector switches to hydrogen. Some features:
 - RNG supplied by biomethane and synthetic natural gas
 - High efficiency through building retrofits
 - Dedicated hydrogen in Industry, 7% hydrogen blend in other sectors

Modeling approach: 3 steps to analyze the impacts of gas end-use decarbonization scenarios

The decarbonization scenarios show a varying decline in gas consumption

Electrification with Gas Back Up

- Overall gas sales declines slightly
- Sales decline mostly as a result of energy efficiency (and moderate switch to HPs)
- Residential
 Commercial
 Industrial

 7
 Gas sales in buildings declines steeply
 - Reliance on gas in coldest hours (24% of residential heating load)

- Gas sales in buildings sector almost eliminated towards 2050
- 7 Gas sales dominated by industrial sector in 2050

Sources & assumptions: full list of scenario parameters is included in the Appendix.

Energy+Environmental Economics

Electricity consumption increases in Electrification scenarios

High Decarbonized Gas

- **Electricity load increases by** around 4%
- Limited growth in industrial sector as a result of electrification in sectors with low temperature heat

Electrification with Gas Back Up

- **Electricity load grows by 52%**
- Most of load growth corresponds 7 to significant industrial electrification
- Load in buildings increases only slightly as a result of efficiency

Industrial

+ 33.3 TWh

+ 0.0 TWh

+ 1.2 TWh

2050

2044 2046 2048

High Electrification

- **Electricity load grows by 59%**
- Most of load growth corresponds to significant industrial electrification
- Load in buildings increases only slightly as a result of efficiency

Sources & assumptions: electrification and Electrification with Gas Back Up scenario are the result of fuel switching. Average COPs per measure are included in the Appendix.

Energy+Environmental Economics

High-Level Takeaways for all Three Scenarios

- Decarbonization of Minnesota's natural gas end-uses by 2050 is possible.
- Efficiency will be an important tool (in terms of costs and feasibility).
- Energy costs will increase (compared to today).
- Will require significant policy and financing.
- Continued technological improvements will help.

Where we're going.

NS Better Energy Better World

Next Steps – Develop Recommendations

- Break into subgroups (December 2020)
 - Utility and regulatory
 - Workforce
 - Residents and small businesses
 - Large commercial and industrial
 - Equity considered throughout
- Bring in outside experts and information as needed
- Subgroups report back to larger group and agree upon recommendations (January-March 2021)
- Final Report (April 2021)

GREAT PLAINS Better Energy. INSTITUTE Better World.

From there, we'll work to move the recommendations forward.

GREAT PLAINS Better Energy. INSTITUTE Better World.

Thank you!

